
Documenting your code with DocBook

Copyright © 2003 Tim Waugh

This article may be used for Red Hat Magazine

What documentation is for and why it doesn't get written

Traditionally speaking, users want documentation but coders don't want to
write it. It is not as black and white as this of course. Some coders write
documentation as well as software, and there are people who use software
but do not want to bother reading documentation. The term
“documentation” itself means different things to different people.

There are people who, when they get their latest electronic toy from the
shop home, will immediately switch it on and start using it hoping that it
will be easy enough to use that they won't have to patiently read the
lengthy manual if they get stuck. Then there are others who will read the
instruction booklet cover to cover before plugging it in.

Documentation is not limited to paper manuals. For software it can mean
on-line help in the form of web pages and pop-up windows, or the manual
pages available from the man command or the GNOME help tool.

When I use a well-designed program I do not expect to be looking for
documentation immediately, because I hope that it will be intuitive and
helpful on its own. A nice looking graphical interface with obvious layout,
or (for tools where a graphical interface is overkill) command line switches
similar to those used elsewhere, go a long way towards making me start
using the program first before hunting for its documentation. All the same,
I would be disappointed if there was none to be found when I eventually
came to look up how to do something, or wanted to find out whether a
particular behaviour is intentional or a mistake.

Why DocBook is good/bad

DocBook is a format for writing technical documentation. It uses XML
mark-up to create the document structure and to distinguish certain types
of word or phrase. It looks a little like HTML, but uses a different set of
tags.

There are tools available for converting DocBook documents into a variety
of formats including HTML for web pages, PDF for printing, on-line manual
pages, and plain text. Unfortunately the maturity of the tools for doing this
varies.

There can be a moderate learning curve when starting to write things
using DocBook. Depending on your background there might be an initial
shock when switching over from a layout-based way of doing things (bold
here, make this writing bigger) to semantic mark-up (emphasize this, make
this a heading). This is easier if you can trust the tools to lay it all out
correctly so the end result is nice to look at!

Then there is the vocabulary of DocBook XML tags to learn. DocBook uses
a different set of tags to HTML, although if you are used to HTML or any

similar mark-up language, it will be easier than if you are not. Once you
start writing you will pick them up quite quickly, and for the more obscure
ones there is an on-line book which documents DocBook. Your editor
might even prompt you with a list of available tags—see later.

Another hurdle is the separation between the DocBook format and the tools
for editing and processing it. You may need to experiment a little to find
out which tools work best in your environment. On the plus side there is
usually a choice between different free and commercial tools, and one of
them is bound to suit your needs.

It may be a bit of a climb but, as someone said to me, the view from the top
of the hill is worth it. Once you get going with it you will have a single
source of documentation for both print and on-line formats. It will be laid
out on the page (or the browser) intelligently and consistently.
Consistency is an even bigger plus when you start writing more extensive
documentation. While it is good for a document to have a consistent way
of expressing things such as sub-headings, file names, function names and
so on, it is even better for a whole set of documents to use the same layout.
The beauty of structured mark-up systems such as DocBook is that you can
alter how a sub-heading should look and have it reflected across all of your
documentation.

There is a whole area of documentation called “literate programming”
which aims to intermingle software with instructions about how it should
be used, for example with comments above function definitions. There is a
large amount to be said about it, but I think it deserves a discussion of its
own another time.

Short history of DocBook

DocBook was designed in the early 1990s by HaL Computer Systems and
O'Reilly & Associates (one of the first publishers to use SGML to produce
their books). It was first formulated as an SGML document type definition,
but is now expressed in XML. A document type definition, or DTD, is a
specification of the set of tags allowed and of which tags are allowed
where. It also specifies the attributes that each tag can have, or must
have. It is now maintained by OASIS, the Organization for the
Advancement of Structured Information Standards. New versions of the
vocabulary are released from time to time, steered by the DocBook
technical committee at OASIS. The committee has strict compatibility
rules for changing the DocBook vocabulary of tags, and new releases of the
official definition are numbered. The latest version at the time of writing is
4.2: “DocBook XML V4.2” or “DocBook SGML V4.2” depending on which
mark-up type you are using.

SGML vs XML in brief

Put simply, XML is just a trendier version of SGML. There are several
differences between SGML and XML but for the purposes of authoring
DocBook documents there is not a lot to choose between them. As
structured document formats, each has their advantages. The reason you
will choose one above the other is likely to be the tools available. The
SGML tools have been around longer than XML, although there are fewer

of them. Free software tools for XML on the other hand have taken off
quite rapidly. Current efforts are focused on the XML tools, and that is
where the future of DocBook lies. There is even talk of recreating DocBook
from scratch entirely with XML, RELAX-NG, XML name spaces, and other
technologies that were not around at the time of DocBook's birth.

Style sheets and catalogues

There are two distinct tool chains, one for DocBook SGML and the other
for DocBook XML. In general, there is a stage in which a style sheet is
applied to the DocBook document in order to produce the desired output
type. For print format output types there is usually another step needed in
order to perform typesetting.

There is a style sheet for each type of output format and because DocBook
SGML uses a different style sheet language to its XML variant, there are a
separate set of style sheets for each. The architect behind the freely
available DocBook style sheets, as with so many DocBook things, is
Norman Walsh. Most current work is going into the style sheets for the
XML version, and they are hosted at SourceForge so that other people can
contribute as well.

To process DocBook using a style sheet, you obviously need to specify
which style sheet to use. However since the choice is not limited to the
ones provided by Norman Walsh, and you could create your own if you
wished, there needs to be a way of naming the one you want to use. This is
not done by just using the file name of the style sheet; provision is made
for using style sheets available on the Internet but not installed locally.
SGML and XML have different solutions to this naming problem but both of
them involve catalogues, simple centralized databases for converting a
style sheet name into the the location of the actual style sheet itself.

It is worth noting at this point that it is not just style sheets that catalogues
can track, but also SGML/XML files, character definitions, document type
definitions, and so on. They are different solutions to the larger problem of
how to reference external “things” from SGML or XML files in such a way
that the files referencing them can be moved between different systems
and still have the references match up.

SGML Open Catalogs have been around in their present form since 1997.
The OASIS technical resolution (TR 9401) specifies what they look like and
how they work. The naming convention used is that of Formal Public
Identifiers, which look like this:

-//Norman Walsh//DOCUMENT DocBook Print Stylesheet//EN

It looks confusing, but it breaks down like this:

● -

A dash here, instead of a plus sign, just means that the organization
owning this public identifier has not been registered (with ISO I think).
Very often the organization is not registered.

● Norman Walsh

This is the ownership identifier, or the organization responsible for the
entity being described (in this case the style sheet).

● DOCUMENT

This describes the type of object. This can be “DTD” for a document
type definition, for instance.

● DocBook Print Stylesheet

This part is a description of the object.

● EN

This part denotes the language that the object is written in. “EN” is for
English.

The SGML Open Catalog system is a simple text-based way of mapping
Formal Public Identifiers to the locations of the objects they describe, and
the program for processing DSSSL style sheets knows how to use it.
Normally it will start reading the catalogue from the file /
etc/sgml/catalog; this Open Catalog file can contain catalogue entries
but usually contains a list of sub-catalogues that should be inspected. The
DocBook SGML distribution contains an Open Catalog listing the objects
that it provides, such as the document type definition itself.

XML now has a similar mechanism for referencing document objects: the
XML Catalogs specification was formulated by OASIS in 2001. It is largely
similar to SGML Open Catalogs, but differs in several ways. The most
important difference is the naming convention. Formal Public Identifiers
are not used; instead the more web-friendly Universal Resource Indicator
(URI) naming scheme is the chosen format. To all intents and purposes, a
URI is the same as a URL (Universal Resource Locator), but the URIs used
in XML Catalog entity resolution must be persistent. There is no point in
giving a name to something for the purpose of making it universally
apparent which object is meant, only to change the name at a later date.

The URI equivalent of the Formal Public Identifier shown above, for the
DocBook XML version of the style sheet, is:

http://docbook.sourceforge.net/release/xsl/current/fo/docbook.xsl

The different parts of this are interpreted in the same way as for any URL.
If you copy it into the location bar of your favourite web browser you will
find yourself looking at the style sheet. However, even if it were not a
working URL it would still be a perfectly good object name—it is just a
unique identifier after all.

The XML Catalog is written in XML rather than the simple line-based
format of an SGML Open Catalog. Its purpose is to convert one URI (the
name of the object) into another (its real location). Although the
docbook.sourceforge.net URI given above already works and gives the
right result, in general it is a bad idea to fetch objects from remote
locations as a matter of course. For one thing it can be very slow, as
during the application of a style sheet there may be a huge number of XML
Catalog look-ups. If each of these relied on Internet access, the speed at
which you could process DocBook documents would be dictated by your
Internet bandwidth. It would also prevent you from being able to process
DocBook on a disconnected machine altogether.

Security is another reason for XML Catalogs to translate remote URIs into

local file references. Style sheet languages are quite powerful and the
Internet is not altogether trustworthy, so fetching and applying style sheets
unchecked from a remote machine is almost as bad as fetching executable
code and hoping it does not contain a virus.

The program for applying a DocBook XML style sheet, xsltproc (see
later), understands how to examine the XML Catalog to find objects that it
needs, and can be told not to fetch remote URIs. There is also a command
called xmlcatalog which can be used to interactively examine the XML
Catalog.

Unfortunately XML Catalogs are not available on every system. Not even
every version of Linux provides XML Catalog entries for the XML objects
on the local system, although of course Red Hat Linux has provided them
for several releases now.

DocBook SGML tools

For SGML the style sheet
language is DSSSL (deep
breath: Document Style
Semantics and Specification
Language). DSSSL has two
main purposes—transformation
and layout. By transformation I
mean re-arranging the
document's structure. For
example it can generate tables
of index or contents. As for
laying out the document's
contents on the page, it
specifies the fonts to use, how
emphasized words appear,
margins, spacing, justification
and so on. The style sheet

language itself looks a little like LISP, with lots of parentheses and
indentations.

The style sheet is applied to the DocBook SGML using a DSSSL engine
such as James Clark's jade, now named openjade. For on-line formats like
HTML and manual pages, this single step is all that is needed, but for print
formats there is more to do. The openjade DSSSL engine creates an
intermediate output format called FOTeX which is then processed by
jadetex to get the final PDF or PostScript. It may need to be run several
times in a row in order to link up all the cross-references for tables of index
and contents. FOTeX, like LaTeX, is a set of TeX macros for typesetting
structured documents.

On Red Hat Linux the docbook-utils package contains some conversion
utilities which know about the steps needed to convert from DocBook
SGML to other formats, and which will re-run jadetex if necessary.
Among the utilities included are docbook2html, docbook2pdf, docbook2ps,
and docbook2man. In fact this last tool for creating on-line manual pages
from DocBook SGML is a bit of a cheat: it uses a Perl script to do the

Illustration 1DocBook SGML tool chain

DocBook SGML
Style sheet

(DSSSL)

HTML
Intermediate
print format:

FOTeX

PDF PostScript

DSSSL engine:
openjade

jadetex

conversion, and avoids DSSSL.

DocBook XML tools

For XML the style sheet language is XSL (eXtensible Stylesheet Language).
In the spirit of XML, XSL itself is written in XML. (I would mention at this
point that DocBook SGML documents can be processed using XSL style
sheets, and DocBook XML documents can be processed using DSSSL style
sheets; however, there is seldom a reason to do this.)

There are, again, two parts to the language: transformation of the
document structure, known as XSL-T (XSL transformations); and page
layout, known as XSL-FO (XSL formatting objects).

This is not the whole story with XSL. Another important part of the
language is XPath. Using this powerful expression language you can
specify parts of the document you want to manipulate with XSL-T.

For on-line formats a formatting
language such as XSL-FO is not
really needed. HTML already
has structural mark-up and the
web browser performs the job of
laying out the content for the
reader. For print formats such
as PDF, XSL-FO needs to be
converted. You can think of
XSL-FO as a sort of
presentation-oriented version of
DocBook. The logical structure
of a DocBook document is
changed into a representation of
what it should look like to the
reader. A further processing
step is needed to convert this
representation into something
like PDF.

The tools for the XSL-T stage of processing include Daniel Veillard's
xsltproc (from libxslt), Michael Kay's SAXON, and the Apache Group's
Xalan project. The one packaged with Red Hat Linux is xsltproc, and it is
a fairly complete and efficient implementation.

For the XSL-FO-into-print step, there are again several different choices.
FOP (Formatting Objects Processor) is the Java offering from the Apache
Group—Xalan also has a Java version. The processor packaged with Red
Hat Linux is Sebastian Rahtz's PassiveTeX. This program, built on David
Carlisle's work on an XML parser written in TeX macros, can convert
directly from XSL-FO into PDF.

There are commercial offerings in the area of XSL-FO processing too of
course. There is still progress to be made with free software in this area,
and there are a lot of approaches being tried. One possible future
contender is the xmlroff project from Sun Microsystems which, unlike the
others, is written in C rather than Java or TeX.

Illustration 2DocBook XML tool chain

DocBook XML
Style sheet

(XSL)

HTML

Intermediate
print format:

XSL-FO

PDF

XSL-T processor:
xsltproc,
SAXON,

Xalan

PassiveTeX,
FOP,

RenderX XEP

PostScript

To make the DocBook XML tool chain easier there is a package called
xmlto, and this is the equivalent to docbook-utils for DocBook SGML.
This program is not limited to DocBook in theory, although in practice it
only currently supports DocBook XML and XSL-FO as input formats. The
idea is that you tell it what your desired destination format is, and it
figures out which style sheet should be applied and what extra processing
steps are needed.

Although it has always been a design goal of xmlto to use whichever tools
are available to do the job, it only knows about xsltproc and PassiveTeX
at the moment. Given that, it is extensible, and can be taught about other
output formats and (XML-based) input formats simply by putting script
files in the right places. When it is executed, xmlto first decides what type
of XML file it is dealing with (DocBook, XSL-FO, or something else), and
then looks for a style sheet for converting to the output format it was told
to create. Once the style sheet has been applied, the post-processing script
for that input-to-output conversion is run: this is just a shell script.

Authoring

Missing from the tool chain diagram is any mention of authoring tools. The
technology is still evolving in this area unfortunately, but at least there are
some choices to consider.

I use the Emacs text editor, with a package called psgml. (If you are averse
to Emacs altogether, skip the next few paragraphs!) Although it does not
offer much help with setting up a DocBook file, once the basic bits are in
place it will show you the tags that are available at the current cursor
position (C-c C-t), can automatically close the current tag (C-c C-/), and will
indent to the current nesting level when you press TAB.

It can take a while for psgml to parse the document type definition for
DocBook (the specification of which tags are available and how they should
be used), but it is possible to save a parsed document type in a format that
is much quicker to load. All you need to do is create a file called ECAT in
an sgml subdirectory of your home directory (i.e. ~/sgml/ECAT). Also
create a subdirectory called ~/sgml/cdtd. Then in the ECAT file put the
line:

public “-//OASIS//DTD DocBook XML V4.2//EN” cdtd/docbkx42.ced

The next time you edit a DocBook XML V4.2 document, the parsed type
definition will be saved for future use.

Another useful feature of psgml is the ability to collapse sections of the
document. It is often useful to be able to see the high-level structure of the
document at a glance—the first few words of the each chapter, for instance
—while you are still working on another chapter. This is exactly what
psgml allows you to do with the M-x sgml-fold-element (C-c C-f C-e) and
M-x sgml-unfold-element (C-c C-u C-e) commands.

Another useful Emacs package for DocBook-related authoring is Tony
Graham's xslide, a development environment for XSL style sheets. This
includes a handy do-nothing style sheet template, keyword highlighting
and clever indentation. It also puts in the closing tag for any start tags you
create. It won't make editing DocBook documents themselves easier, but if

you find yourself tweaking style sheets a lot it will certainly help.

Using the xslide package as a starting point Norman Walsh created a
package called docbookide, the aim being to make it simpler to author
DocBook documents as well as style sheets. It does this job very well,
although it is now an abandoned project: Norman Walsh now uses nXML.

I have to admit that before I started writing this I had not heard of nXML,
or indeed docbookide, despite the fact that I write things using DocBook
quite frequently. I think I had assumed all of the other Emacs-using
DocBookers used psgml. On learning that Norman Walsh used a package I
hadn't heard of for writing documentation, I was eager to try it out to see
what I was missing.

Although it does not have the element-collapsing capability of psgml, it
does have a rather nice benefit: it will validate your document as you type,
putting a polite warning in the status bar if there is a problem with it and
underlining the problem area. If you move the mouse over an underlined
piece of text, a tool-tip will show you what the validity problem is. Already
it is a serious alternative to psgml, although it only became available a
month ago. The nXML Emacs package, as with so many SGML-related bits
of free software, is the work of James Clark.

It is possible to write DocBook using the Vim editor. Syntax highlighting is
available, but there does not seem to be anything resembling the flexibility
or power of psgml or nXML. If you cannot or will not use Emacs, you
might be better off with a graphical tool such as LyX or Conglomerate.

LyX was originally written as a graphical front-end to the LaTeX
typesetting system, wide-spread in academia. LaTeX is a form of
structured mark-up as is DocBook, and recently LyX grew support for
editing DocBook as well. It is not as complete or robust as the Emacs
modes, but it seems to be a good start.

Illustration 3Emacs nxml-mode

Conglomerate aims to be a complete solution for working with documents,
including editing them, storing them and publishing them. It is already
quite advanced and has an extremely nice visual presentation of the
structure of the document. This looks like a very promising tool indeed.

Structured mark-up ideas have secretly been filtering through into the
word-processors we use all the time. Actually in some cases they have
been there from the start. People use them in the way they expect them to
be used, rather than taking advantage of the fact that they allow you to
semantically mark up large parts of what you write. Paragraph styles can
differentiate between headings, sub-headings, normal paragraphs, and so
on, and character styles can be given names like “emphasis” and “function
name”—and there is a move towards XML file formats in the word-
processing world. OpenOffice.org 1.1 already has the beginnings of
rudimentary support for DocBook by allowing XSLT document filters. I
hope this will continue to become easier to use (the available filters are not
quite ready yet).

Project integration

I would suggest that most projects considering switching over to DocBook
for their documentation, or starting to write their documentation from
scratch, should first consider using DocBook XML. Already-written manual
pages can be “lifted” into DocBook format use Eric Raymond's extremely
useful doclifter tool.

The xmlto package provides some Makefile rules for processing DocBook
XML in the /usr/share/xmlto/xmlto.mak file, which can be included by
your project. If you are using automake, it is a good idea to add the names
of your manual pages (like “project.1”) to the EXTRA_DIST variable, so
that they will not need to be regenerated unless the XML has been

Illustration 4Conglomerate

modified. This makes it possible for users to build the project on a system
that has no DocBook processing tools installed.

Pointers and links

● http://cyberelk.net/tim/docbook/selfdocbookx

It is almost always easier to see a working example than to start from
scratch by following someone's description of how it should work. For
this reason I wrote a short article about DocBook written in DocBook
itself—and the appendix includes the XML it came from. It is, to some
extent, self-documenting.

● http://gphoto.sourceforge.net/

The gPhoto program is one example of a project that uses DocBook
XML as its primary format for documentation. It uses xmlto for
generating manual pages.

● http://www.docbook.org/

This is a good starting point for learning about DocBook and the
surrounding tools.

● http://www.menteith.com/xslide/

This is the home of the Emacs XSL editing package that Norman Walsh
based his own DocBook-editing variant on.

● http://www.xmlhack.com/read.php?item=2061

Here is an announcement of the nXML package, including some more
information and screenshots.

● http://www.conglomerate.org/

The Conglomerate structured document management system.

