
Python and GTK+

Copyright © 2003 Tim Waugh

This article may be used for Red Hat Magazine
The traditional way of doing things in UNIX® is with the command line. Want
a directory listing? Run “ ls”. Want to pause the listing after each screenful?
Run “ ls | more ” . Each command has a well-defined task to perform, it has
an input and an output, and commands can be chained together. It is a very
powerful idea, and one that Red Hat Linux builds on too. However, who wants
to type things on the keyboard all the time and memorise all the options that
different commands use? Today, most people prefer to be able to point and
click with their mouse or touchpad.

Graphical applications— with windows and buttons and so on— allow people
to point and click. In the Red Hat Linux world we have a windowing system
called, simply, X. It provides simple drawing services for programs to use,
such as drawing a line, or a box, or a filled region. This level of control is a bit
too fine-grained to appeal to the average programmer though, and toolkits are
available to make the task easier. Some examples are Qt (which KDE uses),
GTK+ (which GNOME uses), and Tcl/Tk. They provide routines for drawing
buttons, text boxes, radio buttons, and so on. All these graphical elements
are collectively called widgets.

Drawing buttons on the screen is not the only task for an X toolkit. It also has
to provide methods for navigating the graphical interface using just the
keyboard, for adjusting the size and contrast of the widgets, and other things
that make the interface more usable in general and, most importantly,
accessible. By this I mean usable by people who are visually impaired or
have problems using a mouse. For example, you should be able to use the
TAB and arrows keys to move the focus around the widgets.

Each toolkit has its preferred programming language, often the one it was
written in: Tk applications are generally written in Tcl; Qt applications are
generally C++; GTK+ applications are often C. It is possible to use toolkits
with other programming languages so long as there are bindings (linguistic
glue) to map functions in the toolkit library to the new language. One good
example is in the Python bindings for GTK+. We'll concentrate on them in
this article.

Python as a programming language
Python, if you have not come across it yet, is a programming language which
is quite easy to read. It is thin on rules, and can be picked up very quickly. It
does not need to be compiled, but instead is interpreted by the Python
program (the interpreter). This makes it quick and easy to make small
changes and test them out. On the negative side, it also means that some
types of error which a compiled language would find at compile time will be

harder to find.

Like most other modern programming languages, Python has the concept of
software objects with associated methods and variables— in other words it is
an object-oriented language.

There is a shallower learning curve than with C because Python programs
have a more straight-forward look about them. You don't need to remember
to put semi-colons all over the place as in C, and the way Python uses
indentation to infer scope is intuitive. For example, when you want a piece of
code to execute only under some particular circumstance, you will write
something like this:

if particular_condition:
do_things ()
do_more_things ()

print “Done!”

It looks just like pseudo-code. The fact that the two lines following the if line
are indented tells Python that they are both to be executed if the condition is
true, and both to be skipped if it is not. The program would print “ Done!” in
either case. In C this scoping is marked by curly braces.

You do not need to declare variables before you use them. Assigning a value
to a variable (like “ x=3 ”) is enough to make it appear. As well as numbers
and strings, Python understands how lists work, as well as associative arrays.
(An associative array is like a dictionary, in that you use a key to look up a
value.)

You can iterate over a list using “ for var in list:” , and you can create a list
of numbers starting at zero using the range function. So for instance, here is
how you can count to ten:

for i in range (10):
print i + 1

Python looks similar to Visual Basic, but in a good way: while having quite a
simple structure it is deceptively powerful. As with Visual Basic, it is
extensible and can be used to control more complicated program modules.
The point about this article of course is that Python can control GTK+
widgets.

Illustration 1 is a snippet of Python showing some more features of the
language. The string “hello world” is used as an object, and its
capitalize method is invoked. Most things in Python can be treated in this
sort of way. You can create your own objects and methods too of course. To

greeting = “hello world”.capitalize ()
for i in range (1, 3):
 # This will display things like 'hello world 1'
 print “%s %d” % (greeting, i)

 if i == 2:
 print “And one for luck!”

Illustration 1 Simple Python example

run the example program, create a file called hello.py with the contents as
shown, and use python ./hello.py at the command line to execute it.

The print line shows how Python can perform string substitution in a similar
way to the printf function of C. Comments are started with the “ #” character
and extend to the end of the line, just like in shell scripts.

When Python encounters an error in the program it is interpreting, it will give
you a traceback, like this:

Traceback (most recent call last):
 File "./cross.py", line 34, in ?
 start()
 File "./cross.py", line 32, in start
 help()
 File "./cross.py", line 8, in help
 print "usage: %s" % name
NameError: global name 'name' is not defined

This shows the context of the error. As the first line says, the most recent call
is at the end. In this case, line 34 of my file has called a function named
start, and that function has, at line 32, called another function named help.
The definition of that function tries to use a variable that does not exist. The
error messages that Python gives are usually quite explanatory.

You can use Python interactively or give it a script to run. Generally you will
only use Python interactively when trying things out. A finished Python
program will be a script in a file. To run Python interactively just type python
at the command line, and you will see something like this:

Python 2.2.3 (#1, Oct 15 2003, 23:33:35)
[GCC 3.3.1 20030930 (Red Hat Linux 3.3.1-6)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

This is sometimes called a Python shell, since it is a thin wrapper around the
Python interpreter itself. To get out of the Python shell and back to the
command line press Control+D.

When you run Python interactively, by just typing python at the command
line, you can use the dir function to find out what methods a given object has.
For instance, typing print dir ("hello") at the Python prompt will list all
the methods that string objects provide, including capitalize. You can even
find out what they do by typing, for example, help
("hello".capitalize). If you do that, you will see the following:

Help on built-in function capitalize:

capitalize(...)
 S.capitalize() -> string

 Return a copy of the string S with only its first character
 capitalized.

I usually only run Python interactively when I want to remember which
methods and functions are available. Functions can be collected into a
special kind of object named a module, and modules are loaded using
import. You can use dir to find out what functions and variables a module
provides; for instance you can load the “ os” module using “ import os” and

find out what’ s in it using “ dir(os)” .

There are some excellent tutorials available for Python, and there are plenty
of useful resources on the Python website, www.python.org. The Emacs text
editor has keyword highlighting support for Python, and I find its automatic
indentation particularly useful.

Python and widgets
Illustration 2 shows a small Python program which displays a window with a
button.

The MessageDialog function creates a GTK+ dialog widget. In the example,
the variable d is the Python object for that widget. Calling its run method
makes the button clickable. The run method will not return until the dialog is
closed. With GTK+ the logic driving the buttons and other widgets takes
place in the main loop. This loop sits waiting for the user to do something,
and then responds. If something happens for which the main program has
registered a callback, control is passed to it.

The Python bindings for GTK+, called PyGTK, are documented at
http://www.gnome.org/~james/pygtk-docs/. Sometimes, however, the GTK+
documentation itself will be more useful— you can find that at
http://developer.gnome.org/doc/API/2.0/gtk/. On Red Hat Linux you can find
this documentation in the gtk2-devel package; once you have installed it,
point your browser at file:///usr/share/gtk-doc/html/gtk/index.html.

Creating dialogs with Glade
You can create GTK+ dialog windows and interfaces using a simple tool
called Glade. Using Glade you can slot different types of widgets together to

Load the GTK+ module
import gtk

Create the dialog widget
d = gtk.MessageDialog (None, 0,
 gtk.MESSAGE_INFO,
 gtk.BUTTONS_CLOSE,
 “Hello, world!”)
Make it run
d.run ()

Illustration 2 Python widget example

make any sort of window you like, and give each widget a name. In your
Python program you can then control the widgets by name.

You can start Glade by clicking on the Red
Hat menu, then Programming, then
Glade Interface Designer. Three
windows will appear: the main window (with a
New button), the palette, and the properties
window. After you click New on the main
window and select to create a new GTK+
project, you are ready to start designing an
interface. Illustration 3 shows the palette
window, offering a selection of widgets.

The first widget on the 6th row in the palette is
for a dialog window (hover the mouse over it
and it tells you “ Dialog”). Click that, and you
will be asked which buttons the dialog should
have. Choose Close, for example, and click
OK. Our dialog window will appear, with a
Close button, and some blank space above
it. You can put a widget in that blank space by
selecting it from the palette and clicking in the
blank space on your dialog window.

Let's carry on and make a dialog that looks like
the one in Illustration 2. For that we need a
picture of a lightbulb, and some text beside it.
The blank space in our dialog window is for a
single widget, but we can fit two in there by
using a horizontal box as our widget. This is a
widget container, and just serves to split up the
space into parts so that we can put more than
one widget in the space. The horizontal box
widget is the first on the 7th row of the palette.
Select it, and then click in the space on the
dialog window. You will be asked how many
columns you require; for just the picture and

the text, we want 2 columns. A vertical line will appear, dividing the space
horizontally in the middle.

Now for the lightbulb picture. Click on the drawing of a house (the tooltip says
“ Image ”) on the 5th row of the palette, and then on the blank space on the
left of the dialog window; the house picture will appear there.

One of the windows that should have appeared when you started the Glade
Interface Designer is for editing widget properties. (If not, select View then
Show Property Editor from the main window, and click again on the
house picture in our dialog window.)

Illustration 3 Glade

The properties of the image widget are displayed, and you can select which
picture the widget will display. In the Icon field, click on the arrow to see the
list of “ stock” icons (the icons that are provided by GTK+). The lightbulb
picture is the Information icon. Change the icon size to Dialog. The
properties window should then look like Illustration 4, and our dialog window
should look something like Illustration 5.

For the text beside it we need to use a label widget, the first on the 2nd row of
the palette. Select it, then click on the remaining blank (actually cross-
hatched) space on the right of our dialog window. The text label1 will
appear there, and the properties window will reflect the label's properties.
Change the label text to read Hello, world!, and we're almost done.

The last thing to change to make the dialog look how we want it to is on the
Packing tab of the properties window: change the Expand field to be
Yes. This makes the widget compete for space as much as the image widget
does, and so makes the dialog look nicer.

To finish off the example, here is a Python program to do the equivalent of
the one in Illustration 2, using Glade. Save your Glade project as
project1.glade (just press the Save button and then OK), and create the

Illustration 4 Properties window

Illustration 5 Dialog window during construction

Python program in the same directory:
Load the Glade module
import gtk.glade

Load the dialog we designed
xml = gtk.glade.XML (“project1.glade”)
d = xml.get_widget (“dialog1”)

Make it run
d.run ()

The project1.glade file contains a description of all the dialogs and
windows that we created using Glade; in this case just the Hello, world!
dialog box. Once it is loaded using gtk.glade.XML you can get at the
individual widgets (the image widget, the label, the close button, the dialog
box itself, and so on) using the get_widget function.

Why go to the bother of designing a dialog using Glade at all? Didn’ t the
MessageDialog function in Illustration 2 do what we wanted? Well, yes it did,
but when the interface starts to get more complicated than a picture and a
button you will find that using Glade to create the widgets and connect them
together is easier than doing it all inside your Python program.

A small program using Python and Glade
Now we know how to design interfaces and link them up with Python, we can
make a simple application. For this example, we will make a printing dialog
application. Its task will be to ask the user which print queue to use, and then
to send its input to that queue. We'll call it “p rint”, and it can be used like:
print < file.ps.

This program is actually useful too. Currently the Mozilla web browser is not
very good at offering a selection of the available print queues when you print
a page— instead you are made to edit an lpr command line. Once our
program is finished we'll be able to tell Mozilla to use it as its print command,
and finally get our drop-down box choosing a queue.

It could also be used as a simple replacement for lpr in other programs. This
is the sort of job that kprinter does already, but we will aim to just make a
really simple tool, for the sake of demonstration.

For finding out which queues are available, we will cheat and assume that the
CUPS spooler is going to be in use. In this case there is a rather easy way of
finding the queues. Starting with Red Hat Linux 9, the Red Hat printer
configuration tool provides a Python module for discovering queues. We will
use that.

Beginning with the Glade part, we want to make a dialog window with two
buttons, Cancel and Print. That combination is not one of the preset
choices, so instead choose the closest match (Cancel, OK) which we can
then change later. When the dialog window has been created, change its title
from dialog1 to Print using the Properties window. Distinct from the
window title, you need to set the widget name of the dialog as well, since we

will use it in our Python code. Set it to dialog.

To change the OK button into a Print button is easy. Click on that button,
and the Properties window will show that you can choose which stock
button it should be. Select Print from the drop-down list.

Next, we want to have a drop-down list (actually called an option menu) of
print queue names with a label beside it prompting the user to select the
queue they want. Just two widgets side by side, so we need a horizontal box.
Once you have placed the horizontal box in the dialog window, adjust it using
the Properties window. It will stretch the widgets we put into it to fill the
vertical space, and that will look strange with an option menu, so turn that off
by switching to the Packing tab and changing Expand to No.

The label should go on the left and say Queue:. To make the dialog a bit
less cluttered-looking, set the X and Y padding of the label to 5 (see lower
down on the Properties window for the label).

Finally the option menu (first widget on the 4th row of the palette) goes into
the last remaining space. Give it the name optionmenu and change the
border width to 5. The Glade work is done—sa ve it as print.glade.
Illustration 6 shows the widget tree that you should have (from Show
Widget Tree).

A short note about using Glade: when you want to select a widget but keep
getting the wrong one when clicking on it, it will be because some widgets
contain others— the dialog widget contains all the others in this example. You
can use the right button on the mouse to get a context menu, and this will
show you the widgets at the cursor position.

The Python code to drive the user interface is shown in Illustration 7. It
expects the print.glade file to be in /usr/local/share/print, so
make that directory using mkdir as root and copy print.glade there (or
alternatively change the pathname in the Python file). Then create the

Illustration 6 Widget tree for print.glade

Python file as print (for instance, in /usr/local/bin and make it
executable (chmod a+x print).

The first line, “ #!/usr/bin/python” , makes the program executable in its
own right. Instead of having to run python /usr/local/bin/print, you
can run /usr/local/bin/print directly and the Python interpreter will
run.

A smaller program
Here is another small example program to try. It is for helping to solve
crosswords by finding words that fit the letters you already have. The hard
work will be done by the grep command; this is just to make a nice-looking
interface for it. If your word looks like ---P-E you can use grep to find words
that match with:

grep ^...p.e$ /usr/share/dict/words

The task of this example program then, will be to ask the user for the word
pattern, run grep, and display the results. Rather than using a dialog window
this time, we will use a normal window. We will need to pass control to the
GTK+ main loop ourselves this time. Illustration 8 shows the Glade widget
tree for our crossword project, and you can see what the finished application

#!/usr/bin/python
import gtk
import gtk.glade
import os
import pycups

Discover queues
queues = pycups.get_queues ()
queuenames = queues.keys ()
queuenames.sort ()

Put them in a menu
menu = gtk.Menu ()
for queue in queuenames:
 menuitem = gtk.MenuItem (queue)
 menu.add (menuitem)
 menuitem.show ()
 menuitem.set_sensitive (gtk.TRUE)

Load the Glade file
glade = "/usr/local/share/print/print.glade"
xml = gtk.glade.XML (glade)

Attach the menu to our option menu
optionmenu = xml.get_widget ("optionmenu")
optionmenu.set_menu (menu)

Run the dialog
dialog = xml.get_widget ("dialog")
response = dialog.run ()

if response == gtk.RESPONSE_OK:
 which = optionmenu.get_history ()
 queue = queuenames[which]
 argv = ["lpr", "-P%s" % queue]
 os.execvp (argv[0], argv)

Illustration 7 Print dialog application

will look like in Illustration 9.

Make sure to give the widgets the correct names: the window is named
“ window”, the text entry box is named “e ntry”, the button is named “g o” and
the text view box is named “t extview”.

As well as putting all the widgets
in place there are some
properties to change in order to
get them to behave as we want
them to. First of all, a small
visual thing: the scrolled window
should have its horizontal and
vertical scroll policies set to
automatic. Without doing this
the scroll bars would both be
present all the time.

Select the button widget in Glade and look at the Signals tab on the
Properties window. This is where you can associate an action with
pressing the button. When you click the “. ..” next to the Signal field you
will see the signals that the button can generate: the one we are interested in
is “ clicked ” , and we want to name its handler “ on_go_clicked” . Click
Add to add this association.

If the user presses the Return key we want it to do the same thing as clicking
on the “G o!” button. To do this we need to add the Return key as a keyboard
accelerator for the button, and this can be done by clicking on Edit...
(next to Accelerators) at the bottom of the Common tab. All you need
to do here is associate the Return key with the “ clicked” signal.

Illustration 8 Crossword widget tree

Illustration 9 Finished crossword helper

On to the Python code. This time we will make a class and define methods
for it. This should be somewhat familiar from other object-orientated
languages. The class will have a method called __init__, which is a special
name and will be called when the class is brought into existence (on the very
last line).

The complete Python program for our crossword project is in Illustration 10.

Real world use
There are real programs that use PyGTK. Most of the Red Hat Linux
configuration tools use it, for example. When you run a tool from the Red Hat
menu under “Syst em Settings” there is a strong chance that it is running a
Python script. The Red Hat Linux Update Agent, up2date, is written in
Python, as is the program that displays the little RHN icon (blue tick) on the
desktop panel. Take a look at the source code in /usr/share/redhat-
/.py.

Even the Red Hat Linux installer uses it. When you install Red Hat Linux,
Python is running from the moment you see the first graphical screen, all the
way through choosing which packages you want, setting the time zone,
adding users and installing the packages.

Of course it is not just Red Hat Linux that uses Python with GTK+. The
GRAMPS genealogy package (at gramps.sourceforge.net) uses it too, and is
written almost exclusively in Python (the one small C extension is to do with
translations, and will be removed soon).

Version 2.0.0 of PyGTK was released in September 2003, and the official
website for it is http://www.daa.com.au/~james/software/pygtk/.

#!/usr/bin/python
import gtk.glade
import gtk
import os

class helper:
 def __init__ (self):
 xml = gtk.glade.XML ("cross.glade")
 w = xml.get_widget ('window')
 w.connect ('destroy', self.quit)
 self.entry = xml.get_widget ('entry')
 self.buffer = xml.get_widget ('textview').get_buffer ()
 xml.signal_connect ('on_go_clicked', self.on_go_clicked)
 gtk.mainloop ()

 def quit (self, widget):
 gtk.main_quit ()

 def on_go_clicked (self, button):
 word = self.entry.get_text ()
 os.environ['WORD'] = word
 words = os.popen ('grep "^${WORD}$" /usr/share/dict/words').read ()
 self.buffer.set_text (words)

helper()

Illustration 10 Crossword program

	Python as a programming language
	Python and widgets
	Creating dialogs with Glade
	A small program using Python and Glade
	A smaller program
	Real world use

