
Public interface of libieee1284

API 3.2
Tim Waugh

Public interface of libieee1284: API 3.2
Tim Waugh
Copyright © 2001-2003 Tim Waugh

Table of Contents
Introduction . iv
libieee1284 . v
I. Structures . 1
parport . 2
parport_list . 3
II. Functions . 4
ieee1284_find_ports . 5
ieee1284_free_ports . 6
ieee1284_get_deviceid . 7
ieee1284_open . 9
ieee1284_close . 11
ieee1284_ref . 12
ieee1284_claim . 13
ieee1284_release . 14
ieee1284_data . 15
ieee1284_status . 17
ieee1284_control . 19
ieee1284_negotiation . 21
ieee1284_ecp_fwd_to_rev . 23
ieee1284_transfer . 24
ieee1284_get_irq_fd . 27
ieee1284_set_timeout . 28

iii

Introduction

iv

In-tro-
duc-
tion

Name
libieee1284 — IEEE1284 communications library

Synopsis

#include <ieee1284.h>
cc files... -lieee1284

Overview
The libieee1284 library is a library for accessing parallel port devices.

The model presented to the user is fairly abstract: a list of parallel ports with arbitrary names, with functions to
access them in various ways ranging from bit operations to block data transfer in one of the IEEE 1284 sanctioned
protocols.

Although the library resides in user space the speed penalty may not be as bad as you initially think, since the
operating system may well provide assistance with block data transfer operations; in fact, the operating system
may even use hardware assistance to get the job done. So, using libieee1284, ECP transfers using DMA are
possible.

The normal sequence of events will be that the application

1.
calls ieee1284_find_ports to get a list of available ports

2.
then ieee1284_get_deviceid to look for a device on each port that it is interested in

3.
and then ieee1284_open to open each port it finds a device it can control on.

4.
The list of ports returned from ieee1284_find_ports can now be disposed of using
ieee1284_free_ports.

5.
Then when it wants to control the device, it will call ieee1284_claim to prevent other drivers from using
the port

6.
then perhaps do some data transfers

7.
and then ieee1284_release when it is finished that that particular command. This claim-control-release
sequence will be repeated each time it wants to tell the device to do something.

8.
Finally when the application is finished with the device it will call ieee1284_close.

v

In-tro-
duc-
tion

Usually a port needs to be claimed before it can be used. This is to prevent multiple drivers from trampling on
each other if they both want to use the same port. The exception to this rule is the collection of IEEE 1284 Device
IDs, which has an implicit open-claim-release-close sequence. The reason for this is that it may be possible to
collect a Device ID from the operating system, without bothering the device with it.

Configuration
When ieee1284_find_ports is first called, the library will look for a configuration file,
/etc/ieee1284.conf.

Comments begin with a ’#’ character and extend to the end of the line. Everything else is freely-formatted tokens.
A non-quoted (or double-quoted) backslash character ’\’ preserves the literal value of the next character, and single
and double quotes may be used for preserving white-space. Braces and equals signs are recognised as tokens,
unless quoted or escaped.

The only configuration instruction that is currently recognised is “disallow method ppdev”, for preventing the use
of the Linux ppdev driver.

Environment
You can enable debugging output from the library by setting the environment variable LIBIEEE1284_DEBUG
to any value.

Files

/etc/ieee1284.conf
Configuration file.

See Also
parport(3), parport_list(3), ieee1284_find_ports(3), ieee1284_free_ports(3), ieee1284_get_deviceid(3),
ieee1284_open(3), ieee1284_close(3), ieee1284_claim(3), ieee1284_release(3), ieee1284_data(3),
ieee1284_status(3), ieee1284_control(3), ieee1284_negotiation(3), ieee1284_ecp_fwd_to_rev(3),
ieee1284_transfer(3), ieee1284_get_irq_fd(3), ieee1284_set_timeout(3)

vi

Structures

1

Name
parport — representation of a parallel port

Synopsis
#include <ieee1284.h>

Description
A parport structure represents a parallel port.

Structure members
The structure has the following members:

struct parport {
/* An artibrary name for the port. */
const char *name;

/* The base address of the port, if that has any meaning, or zero. */
unsigned long base_addr;

/* The ECR address of the port, if that has any meaning, or zero. */
unsigned long hibase_addr;

/* The filename associated with this port,

* if that has any meaning, or NULL. */
const char *filename;

};

2

Name
parport_list — a collection of parallel ports

Synopsis
#include <ieee1284.h>

Description
A parport_list structure is just a vector of parport structures.

Structure members
The structure has the following members:

struct parport_list {
/* Number of elements in the vector. */
int portc;

/* The ports. */
struct parport **portv;

};

3

Functions

4

Name
ieee1284_find_ports — find ports on the system

Synopsis
#include <ieee1284.h>

int ieee1284_find_ports(list, flags);

struct parport_list *list;
int flags;

Description
This function should be called before the other libieee1284 functions. This gives the library a chance to look
around and see what’s available, and gives the program a chance to choose a port to use.

The list is a pointer to a parport_list structure that will be filled in on success.

There are no flags defined; use zero for this parameter.

Return value

E1284_OK
Success. list is filled in and must be destroyed using ieee1284_free_ports(3).

E1284_NOMEM
There is not enough memory available.

E1284_NOTIMPL
One or more of the supplied flags is not supported in this implementation.

5

Name
ieee1284_free_ports — safely deallocate a port list

Synopsis
#include <ieee1284.h>

void ieee1284_free_ports(list);

struct parport_list *list;

Description
When the port list will no longer be used, the program should call ieee1284_free_ports giving it a pointer
to the parport_list structure that holds the list of ports returned by ieee1284_find_ports(3). The ports are reference
counted with the ieee1284_open and ieee1284_close functions, and so the port list may be freed even if
it contains pointers to ports that are still open.

6

Name
ieee1284_get_deviceid — retrieve an IEEE 1284 Device ID

Synopsis
#include <ieee1284.h>

ssize_t ieee1284_get_deviceid(port, daisy, flags, buffer, len);

struct parport *port;
int daisy;
int flags;
char *buffer;
size_t len;

Description
This function is for retrieving the IEEE 1284 Device ID of the specified device. The device is specified by the
port to which it is attached, and optionally an address (daisy) on the daisy chain of devices on that port.

daisy should be -1 to indicate that the device is not participating in a IEEE 1284.3 daisy chain, meaning it is the
last (or only) device on the port, or should be a number from 0 to 3 inclusive to indicate that it has the specified
daisy chain address (0 is next to the port).

The flags parameter should be a bitwise union of any flags that the program wants to use. Available flags are:

F1284_FRESH
Guarantee a fresh Device ID. A cached or OS-provided ID will not be used.

The provided buffer must be at least len bytes long, and will contain the Device ID including the initial two-
byte length field and a terminating zero byte on successful return, or as much of the above as will fit into the
buffer.

Return value
A return value less than zero indicates an error as below. Otherwise, the return value is the number of bytes of
buffer that have been filled. A return value equal to the length of the buffer indicates that the Device ID may
be longer than the buffer will allow.

E1284_NOID
The device did not provide an IEEE 1284 Device ID when interrogated
(perhaps by the operating system if F1284_FRESHwas not specified).

E1284_NOTIMPL
One or more of the supplied flags is not supported in this implementa-
tion, or if no flags were supplied then this function is not implemented
for this type of port or this type of system. This can also be returned
if a daisy chain address is specified but daisy chain Device IDs are not
yet supported.

E1284_NOTAVAIL
F1284_FRESH was specified and the library is unable to access the
port to interrogate the device.

7

ieee1284_get_deviceid

E1284_NOMEM
There is not enough memory.

E1284_INIT
There was a problem initializing the port.

E1284_INVALIDPORT
The port parameter is invalid.

Notes
Unless the F1284_FRESH flag is given, the library will try to find the device’s ID as unobtrusively as possible.
First it will ask the operating system if it knows it, and then it will try actually asking the device for it. Because
of this, the Device ID may be partially computed (the length field, for example) or even partially missing if the
operating system has only remembered some parts of the ID. To guarantee that you are getting the bytes that the
device sent, use F1284_FRESH. Be aware that the operating system may allow any user to inspect the Device
IDs that it provides, whereas device access is normally more restricted.

The initial two-byte length field is a big-endian 16 bit unsigned integer provided by the device and may not be
accurate. In particular, it is meant to indicate the length of the entire string including the length field itself;
however, some manufacturers exclude the length field or just set the length field to some arbitrary number greater
than the ID length.

8

Name
ieee1284_open — open a port

Synopsis
#include <ieee1284.h>

int ieee1284_open(port, flags, capabilities);

struct parport *port;
int flags;
int *capabilities;

Description
In order to begin using a port it must be opened. Any initial set-up of the port is done at this stage. When an
open port is no longer needed it should be closed with ieee1284_close(3).

The possible flags are:

F1284_EXCL
This device cannot share the port with any other device. If this is the case it must be
declared at this stage, so that other drivers trying to access the port know not to bother;
otherwise they will wait until this driver releases the port, i.e. never.
The iopl/dev-port access methods don’t support this yet, but the ppdev ones do.

If capabilities is not NULL it must point to storage for an int, which will be treated as a set of flags, one per
bit, which the library sets or clears as appropriate. If a capability is present it will be used when asked for. They
are:

CAP1284_RAW
Pin-level access is available. If this capability is present then
the following functions are effective: ieee1284_write_data,
ieee1284_read_status, ieee1284_wait_status,
ieee1284_write_control, ieee1284_read_control,
ieee1284_frob_control.

CAP1284_NIBBLE
There is an implementation of nibble mode for this port.

CAP1284_BYTE
There is an implementation of byte mode for this port.

CAP1284_COMPAT
There is an implementation of compatibility mode for this port.

CAP1284_ECP
There is a hardware implementation of ECP mode for this port.

CAP1284_ECPRLE
There is an RLE-aware implementation of ECP mode for this port (the
F1284_RLE flag is recognised by the ECP transfer functions).

CAP1284_ECPSWE
There is a software implementation of ECP mode for this port.

9

ieee1284_open

CAP1284_BECP
There is an implementation of bounded ECP mode for this port.

CAP1284_EPP
There is a hardware implementation of EPP mode for this port.

CAP1284_EPPSWE
There is a software implementation of EPP mode for this port.

CAP1284_IRQ
An interrupt line is configured for this port and interrupt notifications can be
received using ieee1284_get_irq_fd(3).

CAP1284_DMA
A DMA channel is configured for this port.

Return value

E1284_OK
The port is now opened.

E1284_INIT
There was a problem during port initialization. This could be because
another driver has opened the port exclusively, or some other reason.

E1284_NOMEM
There is not enough memory.

E1284_NOTAVAIL
One or more of the supplied flags is not supported by this type of port.

E1284_INVALIDPORT
The port parameter is invalid (for instance, the port may already be
open).

E1284_SYS
There was a problem at the operating system level. The global variable
errno has been set appropriately.

See also
ieee1284_close(3)

10

Name
ieee1284_close — close an open port

Synopsis
#include <ieee1284.h>

int ieee1284_close(port);

struct parport *port;

Description
To close an open port and free any resources associated with it, call ieee1284_close.

Return value

E1284_OK
The port is now closed.

E1284_INVALIDPORT
The port parameter is invalid (perhaps it is not open, for instance).

E1284_SYS
There was a problem at the operating system level. The global variable
errno has been set appropriately.

See also
ieee1284_open(3)

11

Name
ieee1284_ref, ieee1284_unref — modify a port’s reference count

Synopsis
#include <ieee1284.h>

int ieee1284_ref(port);

struct parport *port;

int ieee1284_unref(port);

struct parport *port;

Description
If you want to free the port list from ieee1284_find_ports but open one of the ports later on, you will need
to prevent it from being destroyed in ieee1284_free_ports. Each port has a reference count, and you can
use ieee1284_ref to increment it and ieee1284_unref to decrement it.

If you use ieee1284_ref at any stage, you must later call ieee1284_unref to relinquish the extra reference.
If you do not do this, the resources associated with the port will not be cleaned up.

If you have not previously used ieee1284_ref on a port, you must not use ieee1284_unref on it.

Return value
These functions return the number of references held after the increment or decrement.

See also
ieee1284_open(3)

12

Name
ieee1284_claim — claim access to the port

Synopsis
#include <ieee1284.h>

int ieee1284_claim(port);

struct parport *port;

Description
With the exception of ieee1284_get_deviceid(3), ieee1284_claim must be called on an open port before any
other libieee1284 function for accessing a device on it.

Return value

E1284_OK
Success. Note that, unless the F1284_EXCL flag was specified to
start with, the port should be released within a “reasonable” amount of
time.

E1284_NOMEM
There is not enough memory.

E1284_INVALIDPORT
The port parameter is invalid (for instance, it might not have been
opened yet).

E1284_SYS
There was a problem at the operating system level. The global variable
errno has been set appropriately.

See also
ieee1284_release(3)

13

Name
ieee1284_release — release a port

Synopsis
#include <ieee1284.h>

void ieee1284_release(port);

struct parport *port;

Description
This function undoes the effect of ieee1284_claim(3) by releasing the port for use by other drivers. It is good
practice to release the port whenever convenient. If it is never convenient to do so, the F1284_EXCL flag should
be specified at initialization.

14

Name
ieee1284_read_data, ieee1284_write_data, ieee1284_data_dir, ieee1284_wait_data — control the data lines

Synopsis
#include <ieee1284.h>

int ieee1284_read_data(port);

struct parport *port;

void ieee1284_write_data(port, dt);

struct parport *port;
unsigned char dt;

int ieee1284_data_dir(port, reverse);

struct parport *port;
int reverse;

int ieee1284_wait_data(port, mask, val, timeout);

struct parport *port;
unsigned char mask;
unsigned char val;
struct timeval *timeout;

Description
These functions manipulate the data lines of the parallel port associated with port (which must have been claimed
using ieee1284_claim(3)). The lines are represented by an 8-bit number (one line per bit) and a direction. The
data lines are driven as a group; they may be all host-driven (forward direction) or not (reverse direction). When
the peripheral is driving them the host must not.

For ieee1284_data_dir the reverse parameter should be zero to turn the data line drivers on and non-zero
to turn them off. Some port types may be unable to switch off the data line drivers.

Setting the data lines may have side effects on some port types (for example, some Amiga ports pulse nStrobe).

ieee1284_wait_data waits, up until the timeout, for the data bits specified in mask to have the
corresponding values in val.

Return value
ieee1284_read_data returns the 8-bit number representing the data lines unless it is not possible to return
such a value with this port type, in which case it returns an error code. Possible error codes:

E1284_NOTAVAIL
Bi-directional data lines are not available on this system.

E1284_INVALIDPORT
The port parameter is invalid (perhaps it has not been claimed, for
instance).

15

ieee1284_data

E1284_SYS
There was an error at the operating system level, and errno has been
set accordingly.

E1284_TIMEDOUT
The timeout has elapsed.

Whereas ieee1284_read_data may return E1284_NOTAVAIL on its first invocation on the port, if it does
not do so then it cannot until ieee1284_close is called for that port.

16

Name
ieee1284_read_status, ieee1284_wait_status — analyse status lines

Synopsis
#include <ieee1284.h>

int ieee1284_read_status(port);

struct parport *port;

int ieee1284_wait_status(port, mask, val, timeout);

struct parport *port;
unsigned char mask;
unsigned char val;
struct timeval *timeout;

Description
There are five status lines, one of which is usually inverted on PC-style ports. Where they differ, libieee1284
operates on the IEEE 1284 values, not the PC-style inverted values. The status lines are represented by the
following enumeration:

enum ieee1284_status_bits
{
S1284_NFAULT = 0x08,
S1284_SELECT = 0x10,
S1284_PERROR = 0x20,
S1284_NACK = 0x40,
S1284_BUSY = 0x80,
/* To convert those values into PC-style register values, use this: */
S1284_INVERTED = S1284_BUSY,

};

These functions all act on the parallel port associated with port, which must be claimed.

The purpose of ieee1284_wait_status is to wait until particular status lines have specified values. Its
timeout parameter may be modified on return.

Return value
For ieee1284_read_status, the return value is a non-negative integer with bits set as appropriate represent-
ing the status lines. A negative result indicates an error.

For ieee1284_wait_status, the return value is E1284_OK if the status lines now reflect the desired values
(i.e. status & mask is val), or a negative result indicating an error.

Possible error codes:

E1284_NOTIMPL
The port lacks the required capability. This could be due to a
limitation of this version of libieee1284, or a hardware limitation.

17

ieee1284_status

E1284_NOTAVAIL
Access to the status lines is not available on this port type.

E1284_TIMEDOUT
The timeout has elapsed.

E1284_INVALIDPORT
The port parameter is invalid (for instance, perhaps the port is not
claimed).

Notes
The nAck pin is often able to trigger interrupts on the host machine. With operating system help these interrupts
may be visible to the application via the file descriptor returned by ieee1284_get_irq_fd.

Under Linux, the conditions are that the parallel port driver knows which interrupt line to use and is using it, and
that the relevant /dev/parport device node is accessible and backed by a device driver.

18

Name
ieee1284_read_control, ieee1284_write_control, ieee1284_frob_control, ieee1284_do_nack_handshake — ma-
nipulate control lines

Synopsis
#include <ieee1284.h>

int ieee1284_read_control(port);

struct parport *port;

void ieee1284_write_control(port, ct);

struct parport *port;
unsigned char ct;

void ieee1284_frob_control(port, mask, val);

struct parport *port;
unsigned char mask;
unsigned char val;

int ieee1284_do_nack_handshake(port, ct_before, ct_after, timeout);

struct parport *port;
unsigned char ct_before;
unsigned char ct_after;
struct timeval *timeout;

Description
There are four control lines, three of which are usually inverted on PC-style ports. Where they differ, libieee1284
operates on the IEEE 1284 values, not the PC-style inverted values. The control lines are represented by the
following enumeration:

enum ieee1284_control_bits
{
C1284_NSTROBE = 0x01,
C1284_NAUTOFD = 0x02,
C1284_NINIT = 0x04,
C1284_NSELECTIN = 0x08,
/* To convert those values into PC-style register values, use this: */
C1284_INVERTED = (C1284_NSTROBE|

C1284_NAUTOFD|
C1284_NSELECTIN),

};

These functions all act on the parallel port associated with port, which must be claimed.

The current values on the control lines are available by calling ieee1284_read_control, and may be set by
calling ieee1284_write_control.

To adjust the values on a set of control lines, use ieee1284_frob_control. The effect of this can be
expressed by: ctr = ((ctr & ~mask) ^ val); that is, the bits in mask are unset, and then those in val
are inverted.

19

ieee1284_control

The special function ieee1284_do_nack_handshake is for responding very quickly in a protocol where
the peripheral sets nAck and the host must respond by setting a control line. Its operation, which relies on the
host machine knowing which interrupt nAck generates, is as follows:

1.
Set the control lines as indicated in ct_before.

2.
Wait for nAck interrupt. If timeout elapses, return E1284_TIMEDOUT.

3.
Set the control lines as indicated in ct_after.

On Linux using the ppdev driver, this is performed by the device driver in the kernel, and so is faster than normally
possible in a user-space library.

Return value
The return value of ieee1284_read_control, if non-negative, is a number representing the value on the
control lines.

Possible error codes for ieee1284_read_control:

E1284_NOTAVAIL
The control lines of this port are not accessible by the application.

E1284_INVALIDPORT
The port parameter is invalid (for instance, perhaps it is not claimed).

Possible error codes for ieee1284_do_nack_handshake:

E1284_OK
The handshake was successful.

E1284_NOTAVAIL
This operation is not available on this port type or system. This could
be because port interrupts are not available, or because the underlying
device driver does not support the operation.

E1284_INVALIDPORT
The port parameter is invalid (for instance, perhaps it is not claimed).

20

Name
ieee1284_negotiate, ieee1284_terminate — IEEE 1284 negotiation

Synopsis
#include <ieee1284.h>

int ieee1284_negotiate(port, mode);

struct parport *port;
int mode;

void ieee1284_terminate(port);

struct parport *port;

Description
These functions are for negotiating to and terminating from IEEE 1284 data transfer modes. The default
mode is called compatibility mode, or in other words normal printer protocol. It is a host-to-peripheral mode
only. There are special modes that allow peripheral-to-host transfer as well, which may be negotiated to using
ieee1284_negotiate. IEEE 1284 negotiation is a process by which the host requests a transfer mode and
the peripheral accepts or rejects it. An IEEE 1284-compliant device will require a successful negotiation to a
particular mode before it is used for data transfer (but simpler devices may not if they only speak one transfer
mode).

To terminate the special mode and go back to compatilibity mode use ieee1284_terminate.

These functions act on the parallel port associated with port, which must be claimed.

With a device strictly complying to IEEE 1284 you will need to call ieee1284_terminate in between any
two calls to ieee1284_negotiate for modes other than M1284_COMPAT.

Available modes

Uni-directional modes

• M1284_COMPAT: Compatibility mode. Normal printer protocol. This is not a negotiated mode, but is the
default mode in absence of negotiation. ieee1284_negotiate(port, M1284_COMPAT) is equivalent
to ieee1284_terminate(port). This host-to-peripheral mode is used for sending data to printers, and
is historically the mode that has been used for that before IEEE 1284.

• M1284_NIBBLE: Nibble mode. This peripheral-to-host mode uses the status lines to read data from the
peripheral four bits at a time.

• M1284_BYTE: Byte mode. This peripheral-to-host mode uses the data lines in reverse mode to read data from
the peripheral a byte at a time.

Bi-directional modes

21

ieee1284_negotiation

• M1284_ECP: ECP mode. On entry to ECP mode it is a host-to-peripheral (i.e. forward) mode, but it may be
set to reverse mode using ieee1284_ecp_fwd_to_rev(3). It is common for PC hardware to provide assistance
with this mode by the use of a FIFO which the host (or, in reverse mode, the peripheral) may fill, so that the
hardware can do the handshaking itself.

• M1284_EPP: EPP mode. In this bi-directional mode the direction of data transfer is signalled at each byte.

Mode variations

• M1284_FLAG_DEVICEID: Device ID retrieval. This flag may be combined with a nibble, byte, or ECP
mode to notify the device that it should send its IEEE 1284 Device ID when asked for data.

• M1284_BECP: Bounded ECP is a modification to ECP that makes it more robust at the point that the direction
is changed. (Unfortunately it is not yet implemented in the Linux kernel driver.)

• M1284_ECPRLE: ECP with run length encoding. In this mode, consecutive data bytes of the same value may
be transferred in only a few cycles.

Return value

E1284_OK
The negotiation was successful.

E1284_NOTAVAIL
Negotiation is not available with this port type.

E1284_REJECTED
Negotiation was rejected by the peripheral.

E1284_NEGFAILED
Negotiation failed for some reason. Perhaps the device is not IEEE
1284 compliant.

E1284_SYS
A system error occured during negotiation.

E1284_INVALIDPORT
The port parameter is invalid (for instance, perhaps the port is not
claimed).

22

Name
ieee1284_ecp_fwd_to_rev, ieee1284_ecp_rev_to_fwd — ECP direction switching

Synopsis

int ieee1284_ecp_fwd_to_rev(port);

struct parport *port;

int ieee1284_ecp_rev_to_fwd(port);

struct parport *port;

Description
These functions are used to switch directions when in ECP mode. On negotiation to ECP mode the direction is
forward (in other words, host-to-peripheral). Use ieee1284_ecp_fwd_to_rev to switch from forward to
reverse, and ieee1284_ecp_rev_to_fwd to switch from reverse to forward.

They act on the parallel port associated with port, which must be claimed.

Return value

E1284_OK
Direction switched successfully.

E1284_NOTIMPL
The port lacks the required capability. This could be due to a
limitation of this version of libieee1284, or a hardware limitation.

E1284_INVALIDPORT
The port parameter is invalid (for instance, perhaps the port is not
claimed).

23

Name
ieee1284_nibble_read, ieee1284_compat_write, ieee1284_byte_read, ieee1284_epp_read_data,
ieee1284_epp_write_data, ieee1284_epp_read_addr, ieee1284_epp_write_addr, ieee1284_ecp_read_data,
ieee1284_ecp_write_data, ieee1284_ecp_read_addr, ieee1284_ecp_write_addr — data transfer functions

Synopsis
#include <ieee1284.h>

ssize_t ieee1284_nibble_read(port, flags, buffer, len);

struct parport *port;
int flags;
char *buffer;
size_t len;

ssize_t ieee1284_compat_write(port, flags, buffer, len);

struct parport *port;
int flags;
const char *buffer;
size_t len;

ssize_t ieee1284_byte_read(port, flags, buffer, len);

struct parport *port;
int flags;
char *buffer;
size_t len;

ssize_t ieee1284_epp_read_data(port, flags, buffer, len);

struct parport *port;
int flags;
char *buffer;
size_t len;

ssize_t ieee1284_epp_write_data(port, flags, buffer, len);

struct parport *port;
int flags;
const char *buffer;
size_t len;

ssize_t ieee1284_epp_read_addr(port, flags, buffer, len);

struct parport *port;
int flags;
char *buffer;
size_t len;

ssize_t ieee1284_epp_write_addr(port, flags, buffer, len);

struct parport *port;
int flags;
const char *buffer;
size_t len;

ssize_t ieee1284_ecp_read_data(port, flags, buffer, len);

24

ieee1284_transfer

struct parport *port;
int flags;
char *buffer;
size_t len;

ssize_t ieee1284_ecp_write_data(port, flags, buffer, len);

struct parport *port;
int flags;
const char *buffer;
size_t len;

ssize_t ieee1284_ecp_read_addr(port, flags, buffer, len);

struct parport *port;
int flags;
char *buffer;
size_t len;

ssize_t ieee1284_ecp_write_addr(port, flags, buffer, len);

struct parport *port;
int flags;
const char *buffer;
size_t len;

Description
This set of functions is for tranferring bytes in the relevant transfer mode. For ECP and EPP modes two types of
transfer are possible: data and address (usually referred to as channel in ECP).

The supplied port must be a claimed port.

The supplied buffer must be at least len bytes long. When reading, the transferred data is stored in the buffer;
when writing the data to be transferred is taken from the buffer.

For reads (peripheral to host): if no data is available and F1284_NONBLOCK is not in effect, the inactivity timer
is started. If data becomes available before the inactivity time-out elapses it is read; otherwise the return value
will be E1284_TIMEDOUT.

For writes (host to peripheral): if the peripheral is not willing to accept data and F1284_NONBLOCK is not in
effect, the inactivity timer is started. If the peripheral indicates that it is willing to accept data before the inactivity
time-out elapses it is sent; otherwise the return value will be E1284_TIMEDOUT

The flags may alter the behaviour slightly:

F1284_NONBLOCK
For reads (peripheral to host): if no data is available,
return immediately (with E1284_TIMEDOUT).

For writes (host to peripheral): if the peripheral is
not willing to accept data, return immediately (with
E1284_TIMEDOUT).

F1284_SWE
Don’t use hardware assistance for the transfer, but
instead set the parallel port pins according to the wire
protocol.

25

ieee1284_transfer

F1284_RLE (for ECP only)
Use run length encoding. If the periph-
eral is in ECP mode with RLE, calls to
ieee1284_ecp_read_data must set this
flag in order for the RLE from the periph-
eral to be interpreted correctly, and calls to
ieee1284_ecp_write_data may set this
flag in order to take advantage of RLE.

F1284_FASTEPP (for EPP only)
Use multi-byte transfers. Several bytes at a time are
transferred using hardware assistance, if supporting
hardware is present. The price of this increased
speed is that the return value will be less reliable when
this flag is used.

For ECP mode, a given direction is in force at any particular time, and it is up to the application to ensure that it is
only writing when in forward mode, and reading when in reverse mode.

Return value
The return value is the number of bytes successfully transferred or, if negative, one of:

E1284_NOTIMPL
This transfer mode and flags combination is not yet implemented in
libieee1284.

E1284_TIMEDOUT
Timed out waiting for peripheral to handshake.

E1284_NOMEM
Not enough memory is available.

E1284_SYS
There was a problem at the operating system level. The global variable
errno has been set appropriately.

E1284_INVALIDPORT
The port parameter is invalid (for instance, perhaps the port is not
claimed).

If any bytes are successfully transferred, that number is returned. An error is returned only if no bytes are
transferred.

For host-to-peripheral transfers, all data is at the peripheral by the time the call returns.

See also
ieee1284_ecp_fwd_to_rev(3)

26

Name
ieee1284_get_irq_fd, ieee1284_clear_irq — interrupt notification

Synopsis
#include <ieee1284.h>

int ieee1284_get_irq_fd(port);

struct parport *port;

int ieee1284_clear_irq(port, count);

struct parport *port, , unsigned int *count;

Description
If the port has a configured interrupt line and the port type supports interrupt notification, it is possible to obtain
a file descriptor that may be used for select(2) or poll(2). Any event (readable, writable or exception) means
that an interrupt has been triggered. No operations other than select or poll may be performed on the file
descriptor.

The port must be open in order to call ieee1284_get_irq_fd, and must be claimed when using select or
poll.

The caller must not close the file descriptor, and may not use it at all when the port is not claimed.

When an interrupt has been detected, the caller must call ieee1284_clear_irq to clear the interrupt
condition, at which point the number of interrupts raised can be obtained by supplying a non-NULL count.

Return value
For ieee1284_get_irq_fd: If the return value is negative then it is an error code listed below. Otherwise it
is a valid file descriptor.

E1284_NOTAVAIL
No such file descriptor is available.

E1284_INVALIDPORT
The port parameter is invalid (for instance, perhaps the port is not
open).

For ieee1284_clear_irq:

E1284_OK
The interrupt has been cleared. If count was not NULL the count of
interrupts has been atomically stored to count and reset.

E1284_NOTAVAIL
The count parameter was not NULL but interrupt counting is not
supported on this type of port. The interrupt has been cleared.

E1284_SYS
There was a problem clearing the interrupt.

E1284_INVALIDPORT
The port parameter is invalid (for instance, perhaps the port is not
claimed).

27

Name
ieee1284_set_timeout — modify inactivity timeout

Synopsis
#include <ieee1284.h>

struct timeval *ieee1284_set_timeout(port, timeout);

struct parport *port;
struct timeval *timeout;

Description
This function sets a new value for the inactivity timeout (used for block transfer functions), and returns the old
value.

The port must be claimed.

The timeout parameter may be NULL, in which case the old value is left unchanged.

Return value
This function returns a pointer to a struct timeval representing the old value. This uses the same storage as the
port structure, and so is not valid after closing the port.

Notes
Note that this is an inactivity time-out, not an absolute time-out. During a data transfer, if the peripheral is inactive
for the length of time specified then the host gives up.

It is also advisory; no guarantee is made that the transfer will ever complete.

28

	Public interface of libieee1284
	Introduction

	Structures
	Functions

